Seite auswählen

Leider ist der Eintrag nur auf Amerikanisches Englisch verfügbar. Der Inhalt wird unten in einer verfügbaren Sprache angezeigt. Klicken Sie auf den Link, um die aktuelle Sprache zu ändern.

Case Studies

Presenso applies advanced Machine Learning algorithms (AutoML) to sensor-generated data. Based on the detection of anomalous behavioral patterns, the solution provides predictions of evolving failure and indications of failure root cause.

Oil & Gas

Business Problem

  • Lost production due to unscheduled downtime
  • High O. & M. costs hurt operating margins

Results

  • Prediction Rate: 86%
  • Time to Failure: 5 days

Impact

  • Estimated cost savings of $20 million

Metals and Mining

Business Problem

  • Lost revenue due to unscheduled downtime
  • High overtime labor expenditures

Results

  • Prediction Rate: 93%
  • Time to Failure: 8 days

Impact

  • 30% reduction in unplanned downtime
  • 15% reduction in operating costs

OIL & GAS

Business Problem

  • Lost production due to unscheduled downtime
  • High O. & M. costs hurt operating margins

Results

  • Prediction Rate: 86%
  • Time to Failure: 5 days

Impact

  • Estimated cost savings of $20 million

Metals and Mining

Business Problem

  • Lost revenue due to unscheduled downtime
  • High overtime labor expenditures

Results

  • Prediction Rate: 93%
  • Time to Failure: 8 days

Impact

  • 30% reduction in unplanned downtime
  • 15% reduction in operating costs

Learn more about our solution